Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1181303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396349

RESUMO

Flavobacterium psychrophilum is the causative agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish worldwide. As an important fish pathogen, F. psychrophilum is frequently exposed to multiple invading genetic elements in natural environments. Endonuclease Cas9 provides bacteria with adaptive interference against invading genetic elements. Previous studies revealed that several F. psychrophilum strains harbored a type II-C Cas9 called Fp1Cas9, but little is known about the potential role of this endonuclease against invading genetic elements. In this work, we identified a gene encoding a novel type II-C Cas9 called Fp2Cas9 from F. psychrophilum strain CN46. Through bacterial RNA sequencing, we demonstrated active transcription of both Fp2Cas9 and pre-crRNAs in strain CN46. Bioinformatics analysis further revealed that the transcription of Fp2Cas9 and pre-crRNAs was driven by a newly integrated promoter sequence and a promoter element embedded within each CRISPR repeat, respectively. To formally demonstrate that Fp2Cas9 and associated crRNAs yielded functional interference in strain CN46, a plasmid interference assay was performed, resulting in adaptive immunity to target DNA sequences in Flavobacterium bacteriophages. Phylogenetic analysis demonstrated that Fp2Cas9 was present only in several F. psychrophilum isolates. Phylogenetic analysis revealed that this novel endonuclease was probably acquired through horizontal gene transfer from the CRISPR-Cas9 system in an unidentified Flavobacterium species. Comparative genomics analysis further showed that the Fp2Cas9 was integrated into the type II-C CRISPR-Cas locus in strain CN38 instead of the original Fp1Cas9. Taken together, our results shed light on the origin and evolution of Fp2Cas9 gene and demonstrated that this novel endonuclease provided adaptive interference against bacteriophage infections.

2.
Fish Shellfish Immunol ; 130: 244-251, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122640

RESUMO

The claudin family of proteins are pivotal components of tight junction (TJ) participating in the epithelial barrier function in fish. Our previous studies indicated that one of the claudins, claudin-4-like (OmCLDN4L) was differentially expressed in rainbow trout (Oncorhynchus mykiss) spleen post infection of Flavobacterium psychrophilum, which is the causative pathogen of bacterial coldwater disease (BCWD). However, little is known about the function of OmCLDN4L in rainbow trout against bacterial infection. In the present study, the OmCLDN4L was identified and functionally characterized from rainbow trout. The OmCLDN4L has an open reading frame (ORF) of 668 bp, encoding a 22.86 kDa four-transmembrane protein with function of bicellular tight junction and apical tight junction. OmCLDN4L has the highest similarity with CLDN28a, CLDN28b and CLDN30 in amino acid sequence. Phylogenetic analysis showed that all of CLDN4 and CLDN4-like from fish clustered together but diverged from their counterparts in mammals, with main differences lying in their N-terminus. RT-qPCR results indicated that OmCLDN4L was constitutively expressed in all tissues investigated under healthy conditions, primarily in mucus, liver, skin and intestine. The expression of OmCLDN4L in rainbow trout intestine was slightly down-regulated at day 1 while up-regulated at day 3 and day 7 post F. psychrophilum infection, with the similar profiling of CLDN30 and CLDN10e. The expression level of inflammatory cytokines TNF-α, IL4/13A, IL-6 and pattern recognition receptor TLR-2 showed the same trend with OmCLDN4L in the intestine at day 3 and day 7 post F. psychrophilum infection. Collectively, these findings demonstrate that OmCLDN4L participates in the immune response to bacterial infection, offering new insights into the molecular mechanism of intestinal barrier in rainbow trout against F. psychrophilum infection.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Claudina-4 , Citocinas , Flavobacterium/fisiologia , Interleucina-4 , Interleucina-6 , Filogenia , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa
3.
Front Immunol ; 13: 965099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016951

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease and rainbow trout fry syndrome, causes considerable losses in salmonid aquaculture globally. Systemic F. psychrophilum infections in rainbow trout (Oncorhynchus mykiss) lead to a range of clinical signs, including ulcerative lesions in the skin and muscle and splenitis. Previous studies offered an integrative analysis of the skeletal muscle response to F. psychrophilum infection in rainbow trout. However, little is known about the molecular mechanism of immune response in the spleen, which is an important immune organ of rainbow trout. Here, we investigated the time-course splenic transcriptome profiles in uninfected rainbow trout (CK) and F. psychrophilum-infected rainbow trout at day 3 and day 7 (D3, D7) by RNA-seq analyses. Among the 7,170 differentially expressed genes (DEGs) in the three comparisons (D3 vs. CK, D7 vs. CK, D3 vs. D7), 1,286 DEGs showed consistent upregulation or downregulation at D3 and D7 and were associated with pattern recognition, acute-phase response, complement cascade, chemokine and cytokine signaling, and apoptosis. The Real time quantitative PCR (RT-qPCR) analysis of eight DEGs confirmed the accuracy of the RNA-Sequencing (RNA-seq) data. Our results reflected a general process from pathogen recognition to inflammatory cytokine generation and delineated a putative Toll-like receptor signaling pathway in rainbow trout spleen, following F. psychrophilum infection. Taken together, these results provide new insights into the molecular mechanism of the immune response to F. psychrophilum infection and are a valuable resource for future research on the prevention and control of bacterial coldwater disease during salmon culture.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Citocinas/genética , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Perfilação da Expressão Gênica , Baço/patologia
4.
Microbiol Spectr ; 9(2): e0033021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523994

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, causes great economic losses in salmonid aquaculture worldwide. Recent molecular studies have uncovered important epidemiological and ecological aspects of this pathogen; however, such data are lacking for F. psychrophilum populations affecting aquaculture in China. Herein, F. psychrophilum phenotype, genotype, and virulence were characterized for isolates recovered from epizootics in multiple salmonid aquaculture facilities across China. Thirty-one F. psychrophilum isolates, originating from four provinces and three host fish species, were predominantly homogeneous biochemically but represented 5 sequence types (STs) according to multilocus sequence typing (MLST) that belonged to clonal complex CC-ST10 or 3 newly recognized singleton STs. PCR-based serotyping classified 19 and 12 F. psychrophilum isolates into molecular serotypes 1 and 0, respectively, showing an obvious relationship with host species. Antimicrobial susceptibility analysis via broth microdilution revealed reduced susceptibility to enrofloxacin, flumequine, and oxolinic acid, moderate susceptibility to gentamicin, erythromycin, and florfenicol, and variable susceptibility to ampicillin and oxytetracycline. In vivo challenge experiments confirmed the ability of two representative Chinese F. psychrophilum isolates to induce typical signs of BCWD and mortality in 1-year-old rainbow trout (Oncorhynchus mykiss). Findings collectively demonstrate (i) that BCWD outbreaks in China studied thus far are caused by F. psychrophilum lineages that are common on other continents (e.g., CC-ST10) and others that have not been reported elsewhere (e.g., ST355, ST356, ST357), (ii) that F. psychrophilum molecular serotypes distinguish isolates from different host fish species, even within STs, and (iii) reduced F. psychrophilum antimicrobial susceptibility against compounds used for BCWD control in China. IMPORTANCE Flavobacterium psychrophilum causes substantial economic losses in salmonid aquaculture worldwide. Although this bacterium is also believed to be a disease source in China, published reports of its presence do not yet exist. Herein, F. psychrophilum was linked to multiple disease outbreaks in several salmonid aquaculture facilities within four Chinese provinces, and polyphasic characterization revealed that most isolates were genetically distinct from strains recovered on other continents. Analyses further revealed the predominating molecular serotypes, antimicrobial susceptibility profiles, and pathogenic potential of two representative recovered isolates. Collectively, the results presented here provide important data on the epidemiology and disease ecology of F. psychrophilum in China and pave the way for targeted prevention and control methods to be pursued in the future.


Assuntos
Flavobacterium/efeitos dos fármacos , Flavobacterium/genética , Oncorhynchus kisutch/microbiologia , Oncorhynchus mykiss/microbiologia , Osmeriformes/microbiologia , Animais , Antibacterianos/farmacologia , Aquicultura/economia , China , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Flavobacterium/isolamento & purificação , Flavobacterium/patogenicidade , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fatores de Virulência/genética
5.
J Biol Chem ; 294(47): 17962-17977, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31619521

RESUMO

Streptococcus suis is a globally distributed zoonotic pathogen associated with meningitis and septicemia in humans, posing a serious threat to public health. To successfully invade and disseminate within its host, this bacterium must overcome the innate immune system. The antimicrobial peptide LL-37 impedes invading pathogens by directly perforating bacterial membranes and stimulating the immune function of neutrophils, which are the major effector cells against S. suis However, little is known about the biological relationship between S. suis and LL-37 and how this bacterium adapts to and evades LL-37-mediated immune responses. In this study by using an array of approaches, including enzyme, chemotaxis, cytokine assays, quantitative RT-PCR, and CD spectroscopy, we found that the cysteine protease ApdS from S. suis cleaves LL-37 and thereby plays a key role in the interaction between S. suis and human neutrophils. S. suis infection stimulated LL-37 production in human neutrophils, and S. suis exposure to LL-37 up-regulated ApdS protease expression in the bacterium. We observed that ApdS targets and rapidly cleaves LL-37, impairing its bactericidal activity against S. suis We attributed this effect to the decreased helical content of the secondary structure in the truncated peptide. Moreover, ApdS rescued S. suis from killing by human neutrophils and neutrophil extracellular traps because LL-37 truncation attenuated neutrophil chemotaxis and inhibited the formation of extracellular traps and the production of reactive oxygen species. Altogether, our findings reveal an immunosuppressive strategy of S. suis whereby the bacterium blunts the innate host defenses via ApdS protease-mediated LL-37 cleavage.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Streptococcus suis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quimiotaxia , Cisteína Proteases/química , Cisteína Proteases/genética , Armadilhas Extracelulares/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Viabilidade Microbiana , Neutrófilos/imunologia , Neutrófilos/microbiologia , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus suis/genética , Células THP-1 , Catelicidinas
6.
mSphere ; 4(5)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511369

RESUMO

The occurrence of carbapenemase-producing Enterobacteriaceae (CPE) poses a considerable risk for public health. The gene for Klebsiella pneumoniae carbapenemase-2 (KPC-2) has been reported in many countries worldwide, and KPC-2-producing strains are mainly of human origin. In this study, we identified two novel hybrid plasmids that carry either blaKPC-2 or the fosfomycin resistance gene fosA3 in the multiresistant K. pneumoniae isolate K15 of swine origin in China. The blaKPC-2-bearing plasmid pK15-KPC was a fusion derivative of an IncF33:A-:B- incompatibility group (Inc) plasmid and chromosomal sequences of K. pneumoniae (CSKP). A 5-bp direct target sequence duplication (GACTA) was identified at the boundaries of the CSKP, suggesting that the integration might have been due to a transposition event. The blaKPC-2 gene on pK15-KPC was in a derivative of ΔTn6296-1 The multireplicon fosA3-carrying IncN-IncR plasmid pK15-FOS also showed a mosaic structure, possibly originating from a recombination between an epidemic fosA3-carrying pHN7A8-like plasmid and a pKPC-LK30-like IncR plasmid. Stability tests demonstrated that both novel hybrid plasmids were stably maintained in the original host without antibiotic selection but were lost from the transformants after approximately 200 generations. This is apparently the first description of a porcine sequence type 11 (ST11) K. pneumoniae isolate coproducing KPC-2 and FosA3 via pK15-KPC and pK15-FOS, respectively. The multidrug resistance (MDR) phenotype of this high-risk K. pneumoniae isolate may contribute to its spread and its persistence.IMPORTANCE The global dissemination of carbapenem resistance genes is of great concern. Animals are usually considered a reservoir of resistance genes and an important source of human infection. Although carbapenemase-producing Enterobacteriaceae strains of animal origin have been reported increasingly, blaKPC-2-positive strains from food-producing animals are still rare. In this study, we first describe the isolation and characterization of a carbapenem-resistant Klebsiella pneumoniae ST11 isolate, strain K15, which is of pig origin and coproduces KPC-2 and FosA3 via two novel hybrid plasmids. Furthermore, our findings highlight that this ST11 Klebsiella pneumoniae strain K15 is most likely of human origin and could be easily transmitted back to humans via direct contact or food intake. In light of our findings, significant attention must be paid to monitoring the prevalence and further evolution of blaKPC-2-carrying plasmids among the Enterobacteriaceae strains of animal origin.


Assuntos
Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , China , DNA Bacteriano , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/veterinária , Suínos
7.
J Antimicrob Chemother ; 74(6): 1539-1544, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30903161

RESUMO

OBJECTIVES: Multiresistant Klebsiella pneumoniae isolates rarely cause infections in pigs. The aim of this study was to investigate a multiresistant porcine K. pneumoniae isolate for plasmidic and chromosomal antimicrobial resistance and virulence genes and their genetic environment. METHODS: K. pneumoniae strain ZYST1 originated from a pig with pneumonia. Antimicrobial susceptibility testing was performed using broth microdilution. Conjugation experiments were conducted using Escherichia coli J53 as the recipient. The complete sequences of the chromosomal DNA and the plasmids were generated by WGS and analysed for the presence of resistance and virulence genes. RESULTS: The MDR K. pneumoniae ST1 strain ZYST1 contained three plasmids belonging to incompatibility groups IncFIIk5-FIB, IncI1 and IncX4, respectively. The IncFIIk5-FIB plasmid carried the resistance genes aadA2, mph(A), sul1 and aph(3')-Ia, and the IncI1 plasmid carried aadA22 and erm(B). No resistance genes were present on the IncX4 plasmid. Plasmids related to the aforementioned three plasmids were also present in other Enterobacteriaceae species from humans, animals and the environment. Bioinformatic analyses identified a chromosomal 904 kb MDR element flanked by two copies of ISKpn26. This element included virulence factors, such as a type VI secretion system (T6SS) and genes for type 1 fimbriae, the toxin-antitoxin system HipA/HipB, antimicrobial resistance genes, such as blaSHV-187, mdtk, catA and the multiple antibiotic resistance operon marRABC, and heavy metal resistance determinants, such as chrB/chrA and tehA/tehB. CONCLUSIONS: This study reports a novel 904 kb MDR/virulence genomic element and three important plasmids coexisting in a clinical K. pneumoniae isolate of animal origin.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Pneumonia Bacteriana/veterinária , Doenças dos Suínos/microbiologia , Animais , Biologia Computacional , Genoma Bacteriano , Genômica , Infecções por Klebsiella/microbiologia , Pneumonia Bacteriana/microbiologia , Suínos , Virulência
8.
J Antimicrob Chemother ; 74(7): 1799-1806, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879063

RESUMO

OBJECTIVES: To characterize an MDR blaIMP-4-harbouring plasmid from Enterobacter cloacae EC62 of swine origin in China. METHODS: Plasmid pIMP-4-EC62 from E. cloacae EC62 was transferred by conjugation via filter mating into Escherichia coli J53. Plasmid DNA was extracted from an E. coli J53 transconjugant and sequenced using single-molecule real-time (SMRT) technology. MIC values for both the isolate EC62 and the transconjugant were determined using the broth microdilution and agar dilution methods. Plasmid stability in both the isolate EC62 and the transconjugant was assessed through a series of passages on antibiotic-free media. RESULTS: Plasmid pIMP-4-EC62 is 314351 bp in length, encodes 369 predicted proteins and harbours a novel class 1 integron carrying blaIMP-4 and a group II intron. The blaIMP-4-bearing plasmid belongs to the IncHI2/ST1 incompatibility group. Sequence analysis showed that pIMP-4-EC62 carries four MDR regions and several gene clusters encoding heavy metal resistance. Plasmid pIMP-4-EC62 was stably maintained in both the E. cloacae EC62 isolate and the transconjugant E. coli J53-pIMP-4-EC62 in the absence of selective pressure. Analysis of the evolutionary relatedness of selected IncHI2 plasmids indicates that ST1-type plasmids are key carriers of carbapenemase genes among IncHI2 plasmids. CONCLUSIONS: pIMP-4-EC62 represents the first fully sequenced IncHI2-type blaIMP-4-harbouring plasmid from E. cloacae in China. Co-location of blaIMP-4 with other resistance genes on an MDR plasmid is likely to further accelerate the dissemination of blaIMP-4 by co-selection among bacteria from humans, animals and the environment under the selective pressure of other antimicrobial agents, heavy metals and disinfectants.


Assuntos
Enterobacter cloacae/enzimologia , Enterobacter cloacae/isolamento & purificação , Plasmídeos/análise , beta-Lactamases/genética , Animais , China , Conjugação Genética , Farmacorresistência Bacteriana , Enterobacter cloacae/genética , Escherichia coli/genética , Infecções por Escherichia coli , Instabilidade Genômica , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/microbiologia
9.
Vet Microbiol ; 217: 53-57, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29615256

RESUMO

The objective of this study was to investigate the prevalence of the cfr gene in Escherichia coli isolates from domestic animals in Northeast China and to characterize the cfr-containing plasmids. Between June 2015 and April 2016, 370 E. coli isolates were collected from pigs, chickens, and dairy cows in Northeast China. Among these, 111 were florfenicol resistant, including 109 isolates carrying the floR gene and 6 positives for cfr. The prevalence of cfr in E. coli isolates from the four northeast provinces in China was 1.6% (6/370), which was higher than that previously reported (0.08% and 0.5%). All six cfr-containing E. coli isolates were highly resistant to florfenicol (100%), cefotaxime (100%), and fosfomycin (100%). Complete sequence analysis of two cfr-carrying plasmids revealed high homology of the IncX4-type pEC14cfr plasmid with two other cfr-harboring plasmids, pSD11 and pGXEC6, found in swine E. coli isolates from southern China. pEC14cfr-like plasmids have been isolated in five provinces in southern and northern China. The isolation sites were up to 2700 kilometers apart, implying that pEC14cfr-like plasmids are likely to be national epidemic cfr-carrying plasmids that mediate the dissemination of cfr in China. Moreover, the genetic structure (IS26-IS26-cfr-rec-pre/mob-ramA-IS26) of the second cfr-carrying plasmid, IncF14:A-:B- pEC295cfr, represents a novel genetic environment for cfr identified for the first time in the present study. Sequence homology analysis indicated that the cfr-carrying element was most likely introduced into a cfr-negative pEC12 plasmid backbone, which evolved into the cfr-carrying vector, pEC295cfr. Moreover, isolation of the IncF14:A-:B- pEC295cfr plasmid harboring cfr suggests that IncFII plasmids maybe have become additional effective vehicles for cfr dissemination. These results highlight the importance of surveying the prevalence of IncX4 and IncFII plasmids in gram-negative bacteria, especially in swine E. coli isolates.


Assuntos
Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Metiltransferases/genética , Plasmídeos/genética , Animais , Animais Domésticos/microbiologia , Antibacterianos/farmacologia , Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Galinhas/microbiologia , China/epidemiologia , DNA Bacteriano/genética , Indústria de Laticínios , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Testes de Sensibilidade Microbiana , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia
10.
PLoS One ; 12(3): e0173767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319184

RESUMO

Sortase A (SrtA) has long been recognized as an ideal drug target for therapeutic agents against Gram-positive pathogens. However, the SrtA of Streptococcus suis (Ss-SrtA), an important zoonotic agent, has not been studied. In this study, the enzymatic properties of Ss-SrtA were investigated, and inhibition of Ss-SrtA by natural products was evaluated. Ss-SrtA was expressed and purified. The purified recombinant Ss-SrtA had maximal activity at pH 6.0-7.5, 45°C, and showed a Km of 6.7 µM for the hydrolysis of substrate abz-LPATG-dnp. Different from Staphylococcus aureus SrtA (Sa-SrtA) which is stimulated by Ca2+, Ss-SrtA was observed to be Ca2+ independent. Structural analysis showed that salt bridges formed between K111 and D180 in Ss-SrtA replaced the function of Ca2+ in Sa-SrtA to stabilize the substrate-binding cleft. Site-directed mutagenesis identified H126, C192 and R200 as the key residues of Ss-SrtA active site. To discover potential inhibitors, the percent inhibition of sortase activity by natural products was measured. Among these selected natural products, acteoside, isoquercitrin and baicalin were discovered as novel SrtA inhibitors, with IC50 values of 36.3 ± 1.3 µM, 100.0 ± 1.3 µM and 85.4 ± 1.5 µM, respectively. The inhibitory effects of these three natural products were further confirmed on endogenous Sa-SrtA. Using a previously established S. aureus model with a fluorescent-labeled Sa-SrtA substrate, acteoside, isoquercitrin, and baicalin showed 86%, 28% and 45% inhibition on endogenous Sa-SrtA activity, respectively. Overall, these findings shed new light on enzymatic properties, Ca2+-independent catalytic mechanism and potential inhibitors of Ss-SrtA.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glucosídeos/farmacologia , Fenóis/farmacologia , Quercetina/análogos & derivados , Streptococcus suis/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cálcio/metabolismo , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Avaliação Pré-Clínica de Medicamentos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Quercetina/farmacologia , Temperatura
11.
Pathog Dis ; 73(6): ftv042, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26054573

RESUMO

Sortase A (SrtA) is a cysteine transpeptidase and virulence factor from Staphylococcus aureus (S. aureus) that catalyses the attachment and display of surface proteins on the cell wall, thereby mediating bacterial adhesion to host tissues, host-cell entry and evasion of the immune response. As a result, SrtA has become an important target in the development of therapies for S. aureus infections. In this study, we used the new reference strain S. aureus Newman D2C to investigate the role of SrtA in a murine model of bloodstream infection, when the impact of coagulase and haemolysin is excluded. The results suggested that deletion of SrtA reduced the bacterial burden on the heart, liver and kidneys by blunting the host proinflammatory cytokine response at an early point in infection. Kidneys, but not heart or liver, formed abscesses on the sixth day following non-lethal infection, and this effect was diminished by SrtA mutation. These findings indicate that SrtA is a determining virulence factor in lethality and formation of renal abscesses in mice followed by S. aureus bloodstream infection. We have thus established a convenient in vitro and mouse model for developing SrtA-targeted therapeutic strategies.


Assuntos
Aminoaciltransferases/metabolismo , Bacteriemia/microbiologia , Proteínas de Bactérias/metabolismo , Coagulase/deficiência , Cisteína Endopeptidases/metabolismo , Proteínas Hemolisinas/deficiência , Staphylococcus aureus/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Abscesso/microbiologia , Abscesso/patologia , Aminoaciltransferases/deficiência , Animais , Bacteriemia/patologia , Carga Bacteriana , Cisteína Endopeptidases/deficiência , Modelos Animais de Doenças , Feminino , Deleção de Genes , Coração/microbiologia , Rim/microbiologia , Rim/patologia , Fígado/microbiologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Staphylococcus aureus/genética , Análise de Sobrevida , Fatores de Virulência/deficiência
12.
Molecules ; 20(4): 6533-43, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871372

RESUMO

Sortase A (SrtA) is a cysteine transpeptidase of most Gram-positive bacteria that is responsible for the anchorage of many surface protein virulence factors to the cell wall layer. SrtA mutants are unable to display surface proteins and are defective in the establishment of infections without affecting microbial viability. In this study, we report that quercitrin (QEN), a natural compound that does not affect Staphylococcus aureus growth, can inhibit the catalytic activity of SrtA in fibrinogen (Fg) cell-clumping and immobilized fibronectin (Fn) adhesion assays. Molecular dynamics simulations and mutagenesis assays suggest that QEN binds to the binding sites of the SrtA G167A and V193A mutants. These findings indicate that QEN is a potential lead compound for the development of new anti-virulence agents against S. aureus infections.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Quercetina/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise/efeitos dos fármacos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Quercetina/química , Quercetina/farmacologia
13.
FEMS Microbiol Lett ; 351(1): 95-103, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330077

RESUMO

Sortase A (SrtA), a transpeptidase, anchors surface proteins with an LPXTG-motif sorting signal to the cell envelope. To determine the role of SrtA in the pathogenesis of Staphylococcus aureus, we constructed a mutant strain, ∆SrtA, by genetic techniques and identified its functions in a S. aureus-induced mastitis mouse model. The histological and myeloperoxidase (MPO) level results showed that the ∆SrtA strain attenuated the inflammatory reaction in the mammary tissue of mice compared with wild-type S. aureus challenge. Additionally, the ELISA results showed that the ∆SrtA strain impaired the induction of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), and the Western blot results showed that the mutant strain blocked the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) by attenuating the degradation and phosphorylation of signaling pathway molecules such as IκBα, p65 and p38. These results suggest that SrtA is a key virulence factor in the pathogenesis of S. aureus-induced mastitis in mice. It appears that the srtA mutant affected the attachment of S. aureus to host cells, thus attenuating the activation of the NF-κB and MAPK signaling pathways, which regulated the expression of pro-inflammatory cytokines and decreased the susceptibility to mastitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...